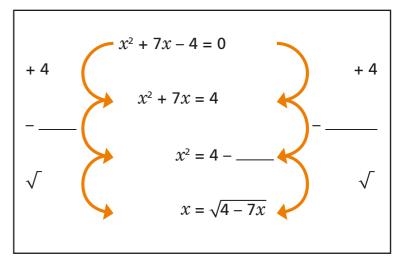
## Solve equations by iteration





a) A sequence is given by the rule  $u_{n+1} = u_n + 3$ Given that  $u_1 = 10$ , work out the values of  $u_2$ ,  $u_3$  and  $u_4$ 


$$u_4 =$$

**b)** Another sequence is given by the rule  $a_{n+1} = 3a_n$ . Given that  $a_1 = 8$ , work out the values of  $a_2$ ,  $a_3$  and  $a_4$ 

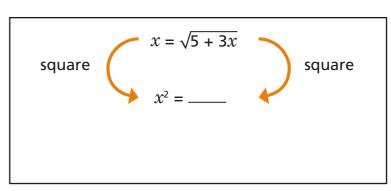
$$a_4 =$$

c) A third sequence is given by the rule  $b_{n+1}$  = 10 – 2 $b_n$ . Given that  $b_1$  = 4, work out the values of  $b_2$ ,  $b_3$  and  $b_4$ 

Complete the workings to show that  $x^2 + 7x - 4 = 0$  can be rearranged to  $x = \sqrt{4 - 7x}$ .



3


$$x_{n+1} = \sqrt{5 + 3x_n}$$

a) Given that  $x_0 = 3$ , work out the values of  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  to 3 significant figures.

$$x_1 =$$

$$x_4 =$$

**b)** Complete the workings to show that  $x = \sqrt{5 + 3x}$  can be rearranged to  $x^2 - 3x - 5 = 0$ 



c) Use the quadratic formula to find the roots of  $x^2 - 3x - 5 = 0$  correct to 2 decimal places.

- **a)** Show that the equation  $x^3 + 5x 1 = 0$  has a root between 0 and 1
  - **b)** Show that the equation  $x^3 + 5x 1 = 0$  can be rearranged to  $x = \frac{1}{5} (1 x^3)$ .
  - c) Starting with  $x_0 = 0$ , use the iteration formula  $x_{n+1} = \frac{1}{5} (1 x_n^3)$  to find an estimate of the root of the equation  $x^3 + 5x 1 = 0$

x =

- a) Show that the equation  $x^3 7x = 3$  has a root between -1 and 0
  - **b)** Show that the equation  $x^3 7x = 3$  can be rearranged to  $x = \frac{x^3 3}{7}$
  - c) Starting with  $x_0 = 0$ , use the iteration formula  $x_{n+1} = \frac{x_n^3 3}{7}$  to find an estimate of a root of the equation  $x^3 7x = 3$

x =

Investigate the iteration for other values of  $x_0$ , for example  $x_0 = 1$ ,  $x_0 = 2$ ,  $x_0 = -1$ , etc.

d) Show that the equation  $x^3 - 7x = 3$  can also be rearranged to  $x = \sqrt[3]{3 + 7x}$ 

e) Starting with  $x_0 = 0$ , use the iteration formula  $x_{n+1} = \sqrt[3]{3 + 7x_n}$  to find an estimate of a root of the equation  $x^3 - 7x = 3$ 

x =

Investigate the iteration for other values of  $x_0$ , for example  $x_0 = 1$ ,  $x_0 = 2$ ,  $x_0 = -1$ , etc.



$$x_{n+1} = \frac{2}{x_n^2} - 4$$

a) Use  $x_0 = -2$  to find the values of  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$ 

 $x_1 =$ 

$$x_4 =$$

**b)** Explain the relationship between  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  and the equation  $x^3 + 4x^2 - 2 = 0$